Curves on normal rational cubic surfaces
نویسندگان
چکیده
منابع مشابه
Rational Points on Cubic Surfaces
Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.
متن کاملCounting Curves on Rational Surfaces
In [CH3], Caporaso and Harris derive recursive formulas counting nodal plane curves of degree d and geometric genus g in the plane (through the appropriate number of fixed general points). We rephrase their arguments in the language of maps, and extend them to other rational surfaces, and other specified intersections with a divisor. As applications, (i) we count irreducible curves on Hirzebruc...
متن کاملRational curves on K3 surfaces
This document is based on lectures given at the 2007 NATO Advanced Study Institute on ‘Higher-Dimensional Geometry over Finite Fields’, organized at the University of Göttingen by Yuri Tschinkel, and on lectures given at the 2010 summer school ‘Arithmetic Aspects of Rational Curves’, organized at the Institut Fourier in Grenoble by Emmanuel Peyre. This work is supported in part by National Scie...
متن کاملLooking for Rational Curves on Cubic Hypersurfaces
The aim of these lectures is to study rational points and rational curves on varieties, mainly over finite fields Fq. We concentrate on hypersurfaces Xn of degree ≤ n+ 1 in Pn+1, especially on cubic hypersurfaces. The theorem of Chevalley–Warning (cf. Esnault’s lectures) guarantees rational points on low degree hypersurfaces over finite fields. That is, if X ⊂ Pn+1 is a hypersurface of degree ≤...
متن کاملRational Curves on Smooth Cubic Hypersurfaces
We prove that the space of rational curves of a fixed degree on any smooth cubic hypersurface of dimension at least four is irreducible and of the expected dimension. Our methods also show that the space of rational curves of a fixed degree on a general hypersurface in Pn of degree 2d ≤ min(n+4, 2n−2) and dimension at least three is irreducible and of the expected dimension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2007
ISSN: 0030-8730
DOI: 10.2140/pjm.2007.230.73